فهرست مطالب

Advanced Pharmaceutical Bulletin
Volume:13 Issue: 1, Jan 2023

  • تاریخ انتشار: 1401/11/16
  • تعداد عناوین: 22
|
  • Kasturi Pawar* Pages 1-4

    Recent coronavirus pandemic and its global socio-economic impact has re-emphasized the need for safe, fast, and efficient delivery of vaccines for humankind. With advent of technological advances, and to improve patient acquiescence, several techniques for fast, effective, and safe delivery of vaccines have been researched and published in the literature in last three decades. These delivery enhancement techniques include but are not limited to electroporation, microneedles (MN), ultrasound, iontophoresis, etc. This review aims at discussing the current research undergoing in vaccine delivery, specifically focusing on microneedles assisted, the historical background of microneedles and their introduction to drug delivery area, and a special focus on formulation challenges and stability in these systems. The review also sheds light on regulatory challenges one must keep in mind for bringing a successful microneedles-based vaccine delivery into market as well as a snapshot of current commercially available microneedles-based products in cosmetic and pharmaceutical industry.

    Keywords: Vaccine delivery, Microneedles, Regulatory challenges, Formulation challenges, Stability
  • Zohreh Jahanafrooz*, Beate Rinner* Pages 5-6
  • Hanieh Abbasi, Maryam Kouchak, Zohreh Mirveis, Fatemeh Hajipour, Mohsen Khodarahmi, Nadereh Rahbar*, Somayeh Handali* Pages 7-23

    Liposomes have been attracted considerable attention as phospholipid spherical vesicles, over the past 40 years. These lipid vesicles are valued in biomedical application due to their ability to carry both hydrophobic and hydrophilic agents, high biocompatibility and biodegradability. Various methods have been used for the synthesis of liposomes, so far and numerous modifications have been performed to introduce liposomes with different characteristics like surface charge, size, number of their layers, and length of circulation in biological fluids. This article provides an overview of the significant advances in synthesis of liposomes via active or passive drug loading methods, as well as describes some strategies developed to fabricate their targeted formulations to overcome limitations of the “first-generation” liposomes.

    Keywords: Liposome, Liposome synthesis, Liposome targeting methods, Liposome loading methods, Liposome applications
  • Somayyeh Ghareghomi, Vahideh Atabaki, Naseh Abdollahzadeh, Shahin Ahmadian*, Salar Hafez Ghoran* Pages 24-35

    One of the central signaling pathways with a regulatory effect on cell proliferation and survival is Akt/mTOR. In many human cancer types, for instance, lung cancer, the overexpression of Akt/mTOR has been reported. For this reason, either targeting cancer cells by synthetic or natural products affecting the Akt/mTOR pathway down-regulation is a useful strategy in cancer therapy. Direct inhibition of the signaling pathway or modulation of each related molecule could have significant feedback on the growth and proliferation of cancer cells. A variety of secondary metabolites has been identified to directly inhibit the AKT/mTOR signaling, which is important in the field of drug discovery. Naturally occurring nitrogenous and phenolic compounds can emerge as two pivotal classes of natural products possessing anticancer abilities. Herein, we have summarized the alkaloids and flavonoids for lung cancer treatment together with all the possible mechanisms of action relying on the Akt/mTOR pathway down-regulation. This review suggested that in search of new drugs, phytochemicals could be considered as promising scaffolds to be developed into efficient drugs for the treatment of cancer. In this review, the terms “Akt/mTOR”, “Alkaloid”, “flavonoid”, and “lung cancer” were searched without any limitation in search criteria in Scopus, PubMed, Web of Science, and Google scholar engines.

    Keywords: Alkaloids, Cancer treatment, Drug discovery, Flavonoids, Lung cancer, PI3K, Akt, mTOR
  • Haleh Vaez*, Hamid Soraya, Alireza Garjani, Tooba Gholikhani Pages 36-47

    Toll-like receptors (TLRs) are essential receptors of the innate immune system, playing a significant role in cardiovascular diseases. TLR4, with the highest expression among TLRs in the heart, has been investigated extensively for its critical role in different myocardial inflammatory conditions. Studies suggest that inhibition of TLR4 signaling pathways reduces inflammatory responses and even prevents additional injuries to the already damaged myocardium. Recent research results have led to a hypothesis that there may be a relation between TLR4 expression and 5' adenosine monophosphate-activated protein kinase (AMPK) signaling in various inflammatory conditions, including cardiovascular diseases. AMPK, as a cellular energy sensor, has been reported to show anti-inflammatory effects in various models of inflammatory diseases. AMPK, in addition to its physiological acts in the heart, plays an essential role in myocardial ischemia and hypoxia by activating various energy production pathways. Herein we will discuss the role of TLR4 and AMPK in cardiovascular diseases and a possible relation between TLRs and AMPK as a novel therapeutic target. In our opinion, AMPK-related TLR modulators will find application in treating different immune-mediated inflammatory disorders, especially inflammatory cardiac diseases, and present an option that will be widely used in clinical practice in the future.

    Keywords: AMPK, Cardiovascular disease, Inflammation, TLRs
  • Masoud Aman Mohammadi, Parastou Farshi, Parisa Ahmadi, Azam Ahmadi, Mohammad Yousefi, Marjan Ghorbani*, Seyede Marzieh Hosseini* Pages 48-68

    Nowadays the importance of vitamins is clear for everyone. However, many patients are suffering from insufficient intake of vitamins. Incomplete intake of different vitamins from food sources due to their destruction during food processing or decrease in their bioavailability when mixing with other food materials, are factors resulting in vitamin deficiency in the body. Therefore, various lipid based nanocarriers such as nanoliposomes were developed to increase the bioavailability of bioactive compounds. Since the function of nanoliposomes containing vitamins on the body has a direct relationship with the quality of produced nanoliposomes, this review study was planned to investigate the several aspects of liposomal characteristics such as size, polydispersity index, zeta potential, and encapsulation efficiency on the quality of synthesized vitamin-loaded nanoliposomes.

    Keywords: Encapsulation, Vitamins, Nanoliposomes, Nanoliposome preparation, Nutraceuticals
  • leila Mahmoudzadeh, Seyyed Meysam Abtahi Froushani, Marjan Ajami, Maryam Mahmoudzadeh* Pages 69-78

    As a parasympathetic alkaloid and the main substance in cigarette smoke, nicotine modulates the immune system, inhibits innate and acquired immunity and is used in treating many autoimmune diseases. It often stimulates the α7 receptor and causes an anti-inflammatory state in the body. This study is designed to evaluate the role of nicotine treatment on immune system. The results showed that nicotine affects many cells in immune system, alters the downstream intracellular mechanisms and changes lymphocytes polarization. This substance alters TLRs and STATs gene expression and thus changes in the innate immune system. All these events inhibit the secretion of pro-inflammatory cytokines and chemokines which increase angiogenesis and metastasis and exacerbates tumors due to increasing survival and cell growth. Nicotine can aggravate tumors in cancer patients, with many positive effects observed in the treating autoimmune disease, Nicotine treatment function in different conditions depends on factors such as concentration, how it is employed, treatment duration and other conditions such as body conditions affecting the immune system, hence, further studies and review of all conditions are required.

    Keywords: Nicotine, Immunomodulation, Autoimmune disease, Cancer
  • Heba Salah Abbas*, Mona Mohame Abd-elhakeem, Rania Mostafa Abd El Galil, Omar Ahmed Reyad, Heba Ahmed Mohamed, Salma Emad Saber Ismail, Manal Ahmed Nabil Pages 79-87

    Recently, the world has been dealing with a destructive global pandemic Coronavirus disease 2019 (COVID-19) infection, since 2020; there were millions of infections and hundreds of thousands of deaths worldwide. With sequencing generations of the virus, around 60% are expected to become infected during the pandemic. Unfortunately, no drug or vaccine has been approved because no real evidence from clinical trials in treatment was reached. According to current thinking, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mortality is caused by a cytokine storm syndrome in patients with hyper-inflammatory conditions, resulting in acute respiratory distress and finally death. In this review, we discuss the various types of natural immune-modulatory agents and their role in the management of SARS-CoV-2, and cytokine storm syndrome. For example, Polyphenols as natural products can block the binding of SARS-CoV-2 spike protein to host cell receptor ACE2, stop viral entry into the host cell and block viral RNA replication. Also, saikosaponins (A, B2, C, and D), triterpene glycosides, which are isolated from medicinal plants exert antiviral action against HCoV-22E9, and Houttuynia cordata water extract has antiviral effects on SARS-CoV. Moreover, eucalyptus oil has promising potential for COVID-19 prevention and treatment. There is an urgent need for research to improve the function of the human immune system all over the world. As a result, actions for better understanding and improving the human immune system are critical steps toward mitigating risks and negative outcomes. These approaches will be strongly recommended for future emerging viruses and pathogens.

    Keywords: SARS-COV-2, Cytokine storm syndrome, Polyphenols, Zinc treatment, Lactoferrin, Medicinal plants, essential oils
  • Luísa Biscaglia Miquelotti, Marcel Henrique Marcondes Sari, Luana Mota Ferreira* Pages 88-95
    Purpose

     Cancer is a global public health problem that affects millions of people every year and the immunotherapy has been a promising alternative for its treatment. The aim of this study was to gather data concerning the efficacy and safety of immunotherapy in the treatment of non-small cell lung cancer (NSCLC), emphasizing pembrolizumb, a humanized antibody. This study also reports the role of immunotherapy in cancer treatments, contemplating the anti-CTLA4, anti-PD-L1 and anti PD-1 action in lymphocyte T cells.

    Methods

     A bibliographic review was performed using Pubmed, SCIELO and SCOPUS databases, screening the scientific studies published within the last 5 years.

    Results

     Seven clinical trials were selected to discuss the benefits of pembrolizumab as NSCLC therapy in untreated and previously treated patients, considering or not the tumor proportion score (TPS). It was found that NSCLC occurs with great frequency in Brazil and worldwide, presenting a poor prognosis due to its late diagnosis in most cases. Immunotherapy is a promising treatment strategy for NSCLC because its benefits overcome its risks compared to other therapies. Besides, the studies evidenced the efficiency of pembrolizumab as monotherapy or in association whit chemotherapy, in the first or second line of treatment and, additionally, patient’s whit TPS ≥ 50% seem to have a greater benefit from the treatment.

    Conclusion

     The data collected herein showed that pembrolizumab is a very promising, effective, and safe treatment option against NSCLC. Lastly, it is important to highlight the relevance of review’s studies, since they are easy-to-read materials, collecting relevant information on a subject.

    Keywords: Immunotherapy, Non-small cell lung cancer, Pembrolizumab, Anti-CTL4, Anti-PD-1
  • Anayatollah Salimi, Hamid Mohammad Soleymani, Saeed Mohammad Soleymani* Pages 96-103
    Purpose

     Finasteride is a 5-alpha reductase inhibitor used to treat hair loss and acne. The skin permeation of finasteride is one of the main challenges associated with dermal drug delivery. One way to overcome the skin barrier is to use penetration enhancers. The purpose of this study was to investigate the effect of some penetration enhancers on finasteride permeability on the skin, as well as the effect of pretreatment time on their efficacy.

    Methods

     In order to determine the effect of penetration enhancers on the skin permeability of finasteride, the skin was exposed to clove oil, urea, and lyophilized powder of grape seed extract (LPGSE) at different pretreatment times (2, 4 h), and then the permeability parameters were determined by passing the drug through the skin.

    Results

     The results of this study showed that clove oil, urea, and LPGSE increased the transfer of finasteride from the skin. The highest rate of permeation was observed with clove oil (4 h), and the least permeability was observed with urea (4 h).

    Conclusion

     Increasing the pretreatment time with clove oil and LPGSE increases the permeability of finasteride. Meanwhile, the increase in pretreatment time with urea reduces the penetration of finasteride from the skin due to reversible effects.

    Keywords: Differential scanning calorimetry, Clove oil, Dermal delivery, Finasteride, FTIR, Permeability enhancers
  • Wan Nuramiera Faznie Wan Eddis Effendy, Rabiatul Basria S. M. N. Mydin*, Amirah Mohd Gazzali, Srimala Sreekantan Pages 104-112

    Pupose: Cisplatin (CDDP), while amongst the recognised chemotherapeutic drugs currently available, is known to have limitations; the lack of a single treatment approach and non-specific targeted therapies. Therefore, the development of an innovative strategy that could achieve localised CDDP treatment is an urgent undertaking. Recent advances in titania nanotube arrays (TNAs) technology have demonstrated promising applications for localised chemotherapeutic drug treatment. The present work investigated the efficiency of a TNA nanosystem for the localised CDDP treatment of nasopharyngeal carcinoma (NPC).

    Methods

     Two models of the TNA nanosystem were prepared: CDDP loaded onto the TNA nanosystem surface (CDDP-TNA) and the other consisted of chitosan-coated CDDP-TNA. CDDP release from these two nanosystems was comprehensively tested on the NPC cells NPC/HK-1 and C666-1. The NPC cytotoxicity profile of the two CDDP-TNA nanosystems was evaluated after incubation for 24, 48 and 72 hours. Intracellular damage profiles were studied using fluorescence microscopy analysis with Hoechst 33342, acridine orange and propidium iodide.

    Results

     The half-maximal inhibitory concentrations (IC50) of CDDP at 24 hours were 0.50 mM for NPC/HK-1 and 0.05 mM for C666-1. CDDP in the CDDP-TNA and chitosan-coated CDDPTNA models presented a significant degree of NPC inhibition (P<0.05) after 24, 48 and 72 hours of exposure. The outcome revealed cellular damage and shrinkage of the cell membranes after 48 hours of exposure to CDDP-TNA.

    Conclusion

     This in vitro work demonstrated the effectiveness of TNA nanosystems for the localised CDDP treatment of NPC cells. Further in vivo studies are needed to support the findings.

    Keywords: Cisplatin, Localised chemotherapeutic treatment, Nasopharyngeal carcinoma cells, Smart drug delivery, Titania nanotube arrays
  • AliAkbar Alizadeh, Behzad Jafari, Siavoush Dastmalchi* Pages 113-122
    Purpose

     Drug repurposing is an approach successfully used for discovery of new therapeutic applications for the existing drugs. The current study was aimed to use the combination of in silico methods to identify FDA-approved drugs with possible S1P1 agonistic activity useful in multiple sclerosis (MS).

    Methods

     For this, a 3D-QSAR model for the known 21 S1P1 agonists were generated based on 3D-QSAR approach and used to predict the possible S1P1 agonistic activity of FDA-approved drugs. Then, the selected compounds were screened by docking into S1P1 and S1P3 receptors to select the S1P1 potent and selective compounds. Further evaluation was carried out by molecular dynamics (MD) simulation studies where the S1P1 binding energies of selected compounds were calculated.

    Results

     The analyses resulted in identification of cobicistat, benzonatate and brigatinib as the selective and potent S1P1 agonists with the binding energies of -85.93, -69.77 and -67.44 kcal. mol-1, calculated using MM-GBSA algorithm based on 50 ns MD simulation trajectories. These values are better than that of siponimod (-59.35 kcal mol-1), an FDA approved S1P1 agonist indicated for MS treatment. Furthermore, similarity network analysis revealed that cobicistat and brigatinib are the most structurally favorable compounds to interact with S1P1 .

    Conclusion

     The findings in this study revealed that cobicistat and brigatinib can be evaluated in experimental studies as potential S1P1 agonist candidates useful in the treatment of MS.

    Keywords: S1P agonists, Drug repurposing, Multiple sclerosis, Molecular dynamics simulations, Similarity network analysis
  • Simzar Hosseinzadeh*, Forough Shams, Roya Fattahi, Ghader Nuoroozi, Elnaz rostami, lida Shahghasempour, Nasim Salehi-Nik*, Mahboubeh Bohlouli, Arash Khojasteh, Nazanin Ghasemi, Habibollah Peiravi Pages 123-133
    Purpose

     A hemocompatible substrate can offer a wonderful facility for nitric oxide (NO) production by vascular endothelial cells in reaction to the inflammation following injuries. NO inhibits platelet aggregation this is especially critical in small-diameter vessels.

    Methods

     The substrate films were made of polyurethane (PU) in a casting process and after plasma treatments, their surface was chemically decorated with polyethylene glycol (PEG) 2000, gelatin, gelatin-aspirin, gelatin-heparin and gelatin-aspirin-heparin. The concentrations of these ingredients were optimized in order to achieve the biocompatible values and the resulting modifications were characterized by water contact angle and Fourier transform infra-red (FTIR) assays. The values of NO production and platelet adhesion were then examined.

    Results

     The water contact angle of the modified surface was reduced to 26±4⸰ and the newly developed hydrophilic chemical groups were confirmed by FTIR. The respective concentrations of 0.05 mg/ml and 100 mg/mL were found to be the IC50 values for aspirin and heparin. However, after the surface modification with aspirin, the bioactivity of the substrate increased in compared to the other experimental groups. In addition, there was a synergistic effect between these reagents for NO synthesis. While, heparin inhibited platelet adhesion more than aspirin.

    Conclusion

     Because of the highly hydrophilic nature of heparin, this reagent was hydrolyzed faster than aspirin and therefore its influence on platelet aggregation and cell growth was greater. Taken together, the results give the biocompatible concentrations of both biomolecules that are required for endothelial cell proliferation, NO synthesis and platelet adhesion.

    Keywords: Hemocompatibility, Polyurethane, Heparin, Aspirin, Surface modification
  • Mohammad Yousefi, Seid Mahdi Jafari, Hossein Ahangari, Ali Ehsani* Pages 134-142
    Purpose

     This study aimed to investigate the effects of nanoliposomes containing crocin and nisin in milk samples as a food model. Therefore, three formulations were prepared and compared, including (1) milk samples containing free nisin and crocin, (2) samples with nanoliposomes containing nisin and crocin, and (3) nisin and crocin-loaded nanoliposomes coated with chitosan.

    Methods

     In order to find the optimum amount of both bioactives within nanoliposomes, analyses of size, polydispersity index (PDI), zeta potential, and encapsulation efficiency were accomplished. Then, the best formulated nanoliposome was evaluated and compared with a solution containing free bioactives and nanoliposomes coated with chitosan using other experiments, including antioxidant and antibacterial activities, viscosity, colorimetric and bacterial growth.

    Results

     The best nanoliposomal system based on the factors of size, PDI, zeta potential, and encapsulation efficiency was related for the nanocarrier with 4 mg crocin, 4.5 mg nisin, and 40 mg lecithin. Based on the results obtained, both nanoliposome (a*=5.41) and chitosancoated nanoliposome (a*=5.09) solutions could significantly (P<0.05) reduce the redness of milk induced by free bioactives (a*=12.32). However, viscosity of milk in chitosan-coated nanoliposome solution was found to be higher (3.42 cP) than other formulations (viscosity of samples with free bioactives was 1.65 cP and viscosity of samples containing nanoliposome was 1.71 cP). In addition, chitosan-coated nanoliposomes could inhibit the growth of Listeria monocytogenes stronger than other samples.

    Conclusion

     Encapsulation of nisin and crocin in nanoliposomes showed promising results for preserving food safety and quality.

    Keywords: Nanoliposome, Nisin, Crocin, Encapsulation, Milk
  • Ata Mahmoodpoor, Afsaneh Farjami, Niloufar Farzan, Hamed Hamishehkar, Parina Asgharian, Sarvin Sanaie, Kamran Shadvar, Farnaz Naeimzadeh, Hadi Hamishehkar* Pages 143-149
    Purpose

     Sepsis and systemic inflammatory response syndrome (SIRS) encompass various problems throughout the body, and two of its major problems are the creation of oxidative substances in the body and decrease of the body’s antioxidant capacity to deal with the stress and organ damage. Optimal enteral nutrition fortified with antioxidant or immunomodulator amino acid is a hot topic concerning sepsis in the critical care setting. Taurine plays a protective role as an antioxidant in cells that is likely to have a protective role in inflammation and cytotoxicity.

    Methods

     In the present study, 20 septic patients and 20 healthy volunteers were enrolled. The blood and plasma taurine levels of the patients on days 1, 3 and 7 were measured. Blood and plasma taurine level and the correlation between them, organ failure, and severity of the disease were assessed.

    Results

     Taurine concentrations in the plasma of the septic patients were significantly lower than control group, and the whole blood concentrations were significantly higher than those of the control group (P<0.001). There was not a significant correlation between the blood and plasma taurine levels in control and septic patients. In addition, there was not any correlation between the severity of the disease, organ failure, mortality, and plasma as well as the blood concentration of taurine.

    Conclusion

     In septic patients, taurine concentration in plasma and blood are low and high, respectively. These concentrations are not linked to each other and not associated with the patients’ outcome, and the disease severity, and organ failure.

    Keywords: Critically ill, Sepsis, Taurine
  • Leandra de Almeida Ribeiro Oliveira, Arthur Christian Garcia da Silva, Douglas Vieira Thomaz, Fabiana Brandão, Edemilson Cardoso da Conceição, Marize Campos Valadares, Maria Tereza Freitas Bara*, Dâmaris Silveira* Pages 150-159
    Purpose

     The emergence of the COVID-19 pandemic has led to the search for potential therapeutic responses for various aspects of this disease. Fruits of Pterodon emarginatus Vogel (Fabaceae), sucupira, have been used in Brazilian traditional medicine because of their anti-inflammatory properties, which have been proven in vivo, in vitro, and in silico. Therefore, the aim of this work is to evaluate P. emarginatus oleoresin and isolated diterpenes by in vitro anti-inflammatory models.

    Methods

     In this study, the mechanisms underlying the anti-inflammatory activity of P. emarginatus oleoresin and vouacapanes 6α,19β-diacetoxy-7β,14β-dihydroxyvouacapan (V1), 6α-acetoxy-7β,14β-dihydroxyvouacapan (V2), and methyl 6α-acetoxy-7β-hydroxyvouacapan-17β-oate (V3) were investigated in HaCaT cells.

    Results

     Oleoresin, V2, and V3 inhibited phospholipase A2 (30.78%, 24.96%, and 77.64%, respectively). Both vouacapanes also inhibited the expression of COX-2 (28.3% and 33.17%, respectively). The production of interleukin 6 (IL-6) was inhibited by oleoresin by 35.47%. However, oleoresin did not interfere with Nrf-2 expression or IL-8 production.

    Conclusion

     The results support the ethnomedicinal use of P. emarginatus oleoresin as an anti-inflammatory herbal medicine, and also highlight P. emarginatus oleoresin and isolated vouacapanes as an attractive therapeutic approach for COVID-19 through the reduction or chronological control of the inflammatory mediators IL-6, cyclooxygenase-2 (COX-2), phospholipase A2, and INF-y (indirectly) during the SARS-CoV-2 infection process.

    Keywords: Coronavirus, Furanoditerpene, Inflammatory cytokines, COVID-19, Sucupira
  • Bruna Alexandre Oliveira da Silva*, Isabela Spido Dias, Luís Eduardo Sarto, Elba Pereira de Gois, Claudia Torres, Eduardo Tonon de Almeida, Cibele Marli Cação Paiva Gouvêa Pages 160-169
    Purpose

     Breast cancer is the most common female malignancy and melanoma is the most lethal type of skin cancer. Traditional therapy for cancer treatment is far from satisfactory due to drug resistance and side effects, thus a search for new medicines is being emphasized. Palladium(II) complexes have been reported as anticancer potential agents. In this work, the anticancer activities and cell death induction of a new series of square-planar Pd(II) complexes were evaluated against MCF-7 and MDA-MB-435 cancer cells.

    Methods

     MCF-7 (breast carcinoma) and MDA-MB-435 (melanoma) cells were cultivated, and treated with ligand and Pd(II) complexes. Cell growth, migration and adhesion inhibition, morphological alterations, cell death induction and, DNA interaction upon treatment were studied.

    Results

     Pd(II) complexes exhibited both short and long-term antiproliferative effects on both cell lines, reducing by 80% cell growth in the SRB assay and abolishing longterm proliferation, estimated by the clonogenic assay. Complexes reduced significantly (P<0.05) cell migration and adhesion when compared to the control group. Complexes induced morphological alterations in cell lines and significant (P<0.05) cellular shrinkage. Cell death was induced and the complexes were able to interact with DNA, inducing cleavage of double-stranded DNA, which may account for the complexes cytotoxic effects, observed against both MCF-7 and MDA-MB-435 cells.

    Conclusion

     Overall, the complexes exhibited cytotoxic activities and induced cell death. These observations emphasize an anticancer role with a potential therapeutic value for Pd(II) complexes to improve the outcome of patients with breast cancer and melanoma.

    Keywords: Anticancer agent, Breast cancer, Cell migration, Cell viability, Melanoma, Metal complexes
  • Khadijeh Dizaji Asl, Ali Rafat, AliAkbar Movassaghpour, Hojjatollah Nozad Charoudeh, Hamid Tayefi Nasrabadi* Pages 170-175
    Purpose

     Acute myeloid leukemia (AML) is known to be an invasive and highly lethal hematological malignancy in adults and children. Resistance to the present treatments, including radiotherapy and chemotherapy with their side effects and telomere length shortening are the main cause of the mortality in AML patients. Telomeres sequence which are located at the end of eukaryotic chromosome play pivotal role in genomic stability. Recent studies have shown that apoptosis process is blocked in AML patient by the excessive telomerase activity in cancerous blasts. Therefore, the find of effective ways to prevent disease progression has been considered by the researchers. Natural killer (NK) cells as granular effector cells play a critical role in elimination of abnormal and tumor cells. Given that the cytotoxic function of NK cells is disrupted in the AML patients, we investigated the effect of telomerase inhibitors on NK cell differentiation.

    Methods

     To evaluate telomerase inhibition on NK cell differentiation, the expression of CD105, CD56, CD57, and KIRs was evaluated in CD34+derived NK cells after incubation of them with BIBR1532.

    Results

     The results showed that the expression of CD105, CD56, CD57, and KIRs receptors reduces after telomerase inhibition. According to these findings, BIBR1532 affected the final differentiation of NK cells.

    Conclusion

     The results revealed that telomerase inhibitor drugs suppress cancer cell progression in a NK cells-independent process.

    Keywords: Natural killer cells, Telomerase, Telomerase inhibitor, Acute myeloid leukemia
  • Morteza Golbashirzadeh, HamidReza Heidari*, Mehdi Talebi, Ahmad Yari Khosroushahi* Pages 176-187
    Purpose

     Drug resistance is a challenging issue in cancer chemotherapy. Cell death induction is one of the main strategies to overcome chemotherapy resistance. Notably, ferroptosis has been considered a critical cell death mechanism in recent years. Accordingly, in this study, the different cell death strategies focused on ferroptosis have been utilized to overcome cisplatin resistance in an in vitro lung cancer model.

    Methods

     The physiological functions of Akt1 and GPX4, as critical targets for ferroptosis and apoptosis induction, were suppressed by siRNA or antagonistic agents in resistant A549 cells. Afterward, the interventions’ impacts on cell viability and reactive oxygen species (ROS) amount were analyzed by flow cytometry. Moreover, the alteration in the relevant gene and protein expression levels were quantified using Real-time PCR and western blot methods.

    Results

     The result showed that the treatment with Akt1 siRNA reversed the cisplatin resistance in the A549 cell line through the induction of apoptosis. Likewise, the combination treatment of the GPX4 siRNA or FIN56 as ferroptosis inducers alongside cisplatin elevated ROS’s cellular level, reduced the cellular antioxidant genes level and increased the cisplatin cytotoxic effect.

    Conclusion

     In conclusion, our study indicated that ferroptosis induction can be considered a promising cell death strategy in cisplatin-resistant cancer cells.

    Keywords: Drug resistance, Cisplatin, Apoptosis, Ferroptosis, Gene silencing
  • Mustafa Cicek, Velid Unsal*, Arif Emre, Adem Doganer Pages 188-195
    Purpose

     Colorectal cancer (CRC) is one of the most common and fatal malignancies in humans, still leading to serious morbidity and mortality. We here aimed to investigate the effects of flavonoid apigenin, which is considered to have anti-tumoral activity on CRC with high epidemiological prevalence, on cell proliferation and cell survivals, and the positive and negative dose-dependent effects of genetic or mutational alterations in SWH pathway components on HT29 CRC cell lines.

    Methods

     Human colon cancer cell lines HT-29 were commercially available. In each flask, 5 groups were formed, each of which consists of 5,000 cells for different dose groups and the cells were plated. After a 24 and 48 h incubation period, cytotoxicity values were measured by MTT assay and gene expression was assessed by real-time polymerase chain reaction (PCR) analysis method.

    Results

     Application of 12.5 and 25 nM of apigenin significantly increased cell death in HT29 cell lines. LATS1, STK3 and TP53 gene expression decreased in the same dose groups compared to control and other groups.

    Conclusion

     It has been concluded that TP53 gene is strongly correlated with LATS1 and STK3 genes among the SWH pathway factors in the progression of CRC and could be used as an important marker for early detection of malignant transmission. In addition, it may be effective in CRC cases especially when 25 nM of apigenin applies for therapeutic purpose.

    Keywords: Apigenin, Colorectal cancer, The Salvador–Warts–Hippo (SWH) pathway, HT29 Cell line
  • Özge Yazıcı, Mehtap Kara, Tuğçe Boran, Gul Ozhan* Pages 196-201
    Purpose

     Methimazole is an anti-thyroid agent, especially as main therapy option for Graves’ disease in children and adults. Drug induced pancreatitis is one of the known adverse effect of methimazole mentioned in case reports. However, the detailed molecular mechanisms of methimazole-induced pancreatitis are still unclear. In this study, the aim is to investigate the adverse effect of methimazole on pancreas cell stress mechanism and apoptosis.

    Methods

     Cytotoxicity was evaluated in human pancreas/duct (PANC-1) cell line. Total oxidant (TOS) and antioxidant status (TAS) for oxidative stress index, glutathione (GSH) level and endoplasmic reticulum (ER) stress biomarkers were evaluated by ELISA. Reactive oxygen species (ROS) levels and apoptosis were evaluated by flow-cytometer.

    Results

     The 30% inhibition rate concentration (IC30) value was determined as 53 mM in PANC1 cells. The exposure concentrations were in the range of 0-40 mM for 48 hours. Methimazole might induce cellular stress conditions. ROS production increases depending on concentration, and this increase shows parallelism with the increase in ER stress biomarkers such as TOS, ERN1 and CASPASE12. Conversely, there was no significant difference between control and exposure groups in terms of apoptosis.

    Conclusion

     In conclusion, methimazole might have triggered the mechanisms of inflammation or autophagy in the pancreatic cells. However, there is still a need for in vitro and in vivo studies including other cellular parameters related to apoptosis.

    Keywords: Methimazole, Drug induced pancreatitis, Toxicity, Reactive oxygen species
  • Shiva Roshan Milani, Bagher Pourheydar, Saman Daneshfar, Leila Chodari* Pages 202-209
    Purpose

     Reduced angiogenesis in the heart tissue is a primary risk factor for heart disease in the diabetes condition. This study was aimed to evaluate the changes of two main angiogenesis mediators, NADPH oxidase 4 (NOX4) and sirtuin 1 (SIRT-1) protein levels in the heart of diabetic rats and the impact of Insulin-like growth factor 1 (IGF-1) and exercise on these proteins.

    Methods

     Injection of 60 mg/kg of streptozotocin in 40 male Wistar rats led to the induction of type 1 diabetes. Angiogenesis was detected in the hearts by immunostaining for PECAM-1/ CD31 after 30 days of treatment with IGF-1 (2 mg/kg/day) and exercise. ELISA technique was utilized to establish the expression levels of NOX4 and SIRT-1 within the heart.

    Results

     The results revealed a significant increase in HbA1c and a significant decrease in SIRT1, NOX4 levels and angiogenesis grade in the heart of diabetes group compared to control group. Meanwhile, IGF-1 and exercise alone or in combination completely masked these effects. Additionally, synergistic effect on SIRT-1, HbA1c levels and angiogenesis grade is evident when IGF-1 and exercise are applied simultaneously.

    Conclusion

     Our findings suggest that reduction in angiogenesis in the heart of diabetic rats may be mediated by down expression of NOX4 and SIRT-1 protein levels. It was also displayed that IGF-1 and exercise as novel therapies increase NOX4 and SIRT-1 protein levels within the hearts of diabetic rats.

    Keywords: Diabetes, Heart, Angiogenesis, Exercise, IGF-I, NOX4, SIRT1